Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antiviral Res ; 212: 105579, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2268977

RESUMO

Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration, and high mortality in neonatal piglets. It has caused huge economic losses to animal husbandry worldwide. Current commercial PEDV vaccines do not provide enough protection against variant and evolved virus strains. No specific drugs are available to treat PEDV infection. The development of more effective therapeutic anti-PEDV agents is urgently needed. Our previous study suggested that porcine milk small extracellular vesicles (sEV) facilitate intestinal tract development and prevent lipopolysaccharide-induced intestinal injury. However, the effects of milk sEV during viral infection remain unclear. Our study found that porcine milk sEV, which was isolated and purified by differential ultracentrifugation, could inhibit PEDV replication in IPEC-J2 and Vero cells. Simultaneously, we constructed a PEDV infection model for piglet intestinal organoids and found that milk sEV also inhibited PEDV infection. Subsequently, in vivo experiments showed that milk sEV pre-feeding exerted robust protection of piglets from PEDV-induced diarrhea and mortality. Strikingly, we found that the miRNAs extracted from milk sEV inhibited PEDV infection. miRNA-seq, bioinformatics analysis, and experimental verification demonstrated that miR-let-7e and miR-27b, which were identified in milk sEV targeted PEDV N and host HMGB1, suppressed viral replication. Taken together, we revealed the biological function of milk sEV in resisting PEDV infection and proved its cargo miRNAs, miR-let-7e and miR-27b, possess antiviral functions. This study is the first description of the novel function of porcine milk sEV in regulating PEDV infection. It provides a better understanding of milk sEV resistance to coronavirus infection, warranting further studies to develop sEV as an attractive antiviral.


Assuntos
Infecções por Coronavirus , MicroRNAs , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Células Vero , Vírus da Diarreia Epidêmica Suína/genética , Leite , MicroRNAs/genética , MicroRNAs/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Diarreia/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/tratamento farmacológico , Doenças dos Suínos/prevenção & controle
2.
BMC Pulm Med ; 22(1): 309, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2002159

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the main infectious diseases that seriously threatens global health, while diagnostic delay (DD) and treatment dramatically threaten TB control. METHODS: Between 2005 and 2017 in Shandong, China, we enrolled pulmonary tuberculosis (PTB) patients with DD. DD trends were evaluated by Joinpoint regression, and associations between PTB patient characteristics and DD were estimated by univariate and multivariate logistic regression. The influence of DD duration on prognosis and sputum smear results were assessed by Spearman correlation coefficients. RESULTS: We identified 208,822 PTB cases with a median DD of 33 days (interquartile range (IQR) 18-63). The trend of PTB with DD declined significantly between 2009 and 2017 (annual percent change (APC): - 4.0%, P = 0.047, 2009-2013; APC: - 6.6%, P = 0.001, 2013-2017). Patients aged > 45 years old (adjusted odds ratio (aOR): 1.223, 95% confidence interval (CI) 1.189-1.257, 46-65 years; aOR: 1.306, 95% CI 1.267-1.346, > 65 years), farmers (aOR: 1.520, 95% CI 1.447-1.596), and those with a previous treatment history (aOR: 1.759, 95% CI 1.699-1.821) were prone to developing long DD (> 30 days, P < 0.05). An unfavorable outcome was negatively associated with a short DD (OR: 0.876, 95% CI 0.843-0.910, P < 0.001). Sputum smear positive rate and unfavorable outcomes were positively correlated with DD duration (Spearman correlation coefficients (rs) = 1, P < 0.001). CONCLUSIONS: The DD situation remains serious; more efficient and comprehensive strategies are urgently required to minimize DD, especially for high-risk patients.


Assuntos
Tuberculose Pulmonar , Tuberculose , China/epidemiologia , Diagnóstico Tardio , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Tuberculose/diagnóstico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia
3.
J Med Virol ; 94(8): 3982-3987, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1802454

RESUMO

There is a potential risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread through human contact with seafood and the inanimate materials contaminated by the virus. In this study, we examined the stability of the virus in artificial seawater (ASW) and on the surface of selected materials. SARS-CoV-2 (3.75 log10 TCID50 ) in ASW at 22℃ maintained infectious about 3 days and at 4℃ the virus survived more than 7 days. It should be noticed that viable virus at high titer (5.50 log10 TCID50 ) may survive more than 20 days in ASW at 4℃ and for 7 days at 22℃. SARS-CoV-2 on stainless steel and plastic bag maintained infectious for 3 days, and on nonwoven fabric for 1 day at 22℃. In addition, the virus remained infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days at 4℃. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Plásticos , Água do Mar , Aço Inoxidável
4.
ISPRS International Journal of Geo-Information ; 10(12):836, 2021.
Artigo em Inglês | MDPI | ID: covidwho-1580707

RESUMO

During the COVID-19 lockdown in Wuhan, transportation, industrial production and other human activities declined significantly, as did the NO2 concentration. In order to assess the relative contributions of different factors to reductions in air pollutants, we implemented sensitivity experiments by Random Forest (RF) models, with the comparison of the contributions of meteorological conditions, human mobility, and emissions from industry and households between different periods. In addition, we conducted scenario analyses to suggest an appropriate limit for control of human mobility. Different mechanisms for air pollutants were shown in the pre-pandemic, pre-lockdown, lockdown, and post-pandemic periods. Wind speed and the Within-city Migration index, representing intra-city mobility intensity, were excluded from stepwise multiple linear models in the pre-lockdown and lockdown periods. The results of sensitivity experiments show that, in the COVID-19 lockdown period, 73.3% of the reduction can be attributed to decreased human mobility. In the post-pandemic period, meteorological conditions control about 42.2% of the decrease, and emissions from industry and households control 40.0%, while human mobility only contributes 17.8%. The results of the scenario analysis suggest that the priority of restriction should be given to human mobility within the city than other kinds of human mobility. The reduction in the NO2 concentration tends to be smaller when human mobility within the city decreases by more than 70%. A limit of less than 40% on the control of the human mobility can achieve a better effect, especially in cities with severe traffic pollution.

5.
Front Med (Lausanne) ; 8: 657006, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1403481

RESUMO

Background: Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are two major infectious diseases posing significant public health threats, and their coinfection (aptly abbreviated COVID-TB) makes the situation worse. This study aimed to investigate the clinical features and prognosis of COVID-TB cases. Methods: The PubMed, Embase, Cochrane, CNKI, and Wanfang databases were searched for relevant studies published through December 18, 2020. An overview of COVID-TB case reports/case series was prepared that described their clinical characteristics and differences between survivors and deceased patients. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) for death or severe COVID-19 were calculated. The quality of outcomes was assessed using GRADEpro. Results: Thirty-six studies were included. Of 89 COVID-TB patients, 19 (23.46%) died, and 72 (80.90%) were male. The median age of non-survivors (53.95 ± 19.78 years) was greater than that of survivors (37.76 ± 15.54 years) (p < 0.001). Non-survivors were more likely to have hypertension (47.06 vs. 17.95%) or symptoms of dyspnea (72.73% vs. 30%) or bilateral lesions (73.68 vs. 47.14%), infiltrates (57.89 vs. 24.29%), tree in bud (10.53% vs. 0%), or a higher leucocyte count (12.9 [10.5-16.73] vs. 8.015 [4.8-8.97] × 109/L) than survivors (p < 0.05). In terms of treatment, 88.52% received anti-TB therapy, 50.82% received antibiotics, 22.95% received antiviral therapy, 26.23% received hydroxychloroquine, and 11.48% received corticosteroids. The pooled ORs of death or severe disease in the COVID-TB group and the non-TB group were 2.21 (95% CI: 1.80, 2.70) and 2.77 (95% CI: 1.33, 5.74) (P < 0.01), respectively. Conclusion: In summary, there appear to be some predictors of worse prognosis among COVID-TB cases. A moderate level of evidence suggests that COVID-TB patients are more likely to suffer severe disease or death than COVID-19 patients. Finally, routine screening for TB may be recommended among suspected or confirmed cases of COVID-19 in countries with high TB burden.

6.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-726737.v1

RESUMO

Background: Virus-caused diseases are a huge challenge to both animals and human beings, especially coronaviruses. Porcine epidemic diarrhea virus (PEDV), a coronavirus, causes acute diarrhea and up to 100% mortality in piglets less than three weeks of age. Maternal immunity provides protection for piglets in resisting PEDV infection. Small extracellular vesicles (sEV) contain bioactive molecules such as miRNAs to exchange genetic and epigenetic information between cells. Our previous study suggested that milk sEV facilitated intestinal tract development and prevented LPS-induced intestine damage. However, the effects of milk sEV on the inhibition of viral infections remain unclear. Results: In this study, through in vivo experiments, we found that porcine milk sEV protected piglets from PEDV-induced diarrhea and death. In vitro, we clarified that this protective effect was partly generated through the inhibition of the PEDV-N protein and HMGB1 by sEV miR-let-7e and miR-27b, respectively. Conclusions: In conclusion, we report that porcine milk sEVs protected piglets from PEDV-induced diarrhea and death by inhibiting virus replication, and this protective effect was partly generated through the inhibition of the PEDV-N and HMGB1 pathways by exosomal miR-let-7e and miR-27b. This study reveals a new antiviral function of milk sEVs, and the results suggest that milk sEVs may act as a mother-offspring transmission pathway for protecting newborns against PEDV infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Diarreia
7.
Applied Materials Today ; 22:100887, 2021.
Artigo em Inglês | ScienceDirect | ID: covidwho-956911

RESUMO

Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies;discuss the limitations of NO as an antiviral agent;and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA